
Clustering Analysis of Chicago Neighbourhoods Taxi Use

Jarome Leslie

July 06, 2020

Contents
Summary 1

Analysis 2
Problem . 2
Data Sources . 2
Data Exploration . 3
Scaling Data . 4
Dimension Reduction . 4
Clustering . 5

K-Means . 6
Gaussian Mixture Models . 7

Discussion . 9
Feature Importance . 10

Appendix 12
Dependencies . 12
Plotting functions . 12
SQL queries for Inbound and Outbound trips . 12

Summary
With the goal of clustering Chicago’s 77 community areas or neighbourhoods based on their taxi usage
and demographics, this analysis employs the K-Means and Gaussian Mixture Model algorithms. Prior to
implementing these algorithms, the data was first scaled to prevent features with the largest numeric values
from overshadowing other columns with smaller values. Next, the dimension reduction technique of Principal
Component Analysis was used to flatten the dataset into two dimensions.

After testing multiple configurations, a K-Means algorithm with six groups was selected based on its superior
metrics of silhouette score and inertia. Comparatively, a GMM clustering algorithm with four components
was selected based on it having the best performing AIC and BIC scores. Upon examination of the clustering
results, both approaches weighted the following features as most important: population employed, population
in labor force, total commuters, population over 16, and total population. Going forward, iterating on
removing some demographic data will help to increase the importance taxi ridership behavior in the creation
of clusters.

This analysis was performed using the core python packages of Pandas, NumPy, and Sklearn with altair
for graphics. The outcomes of both techniques were overlayed on a map of the city using Kepler.gl.

1

Analysis
Problem
As seen in Figure 1, the city of Chicago is divided into 77 community areas or neighbourhoods. Given access
to publicly available data on community area taxi usage and demographics, the goal of this analysis is to
cluster these neighbourhoods into logical groups.

Figure 1: Map of Chicago Community Areas

Data Sources
The data used in this analysis were taken from two public data sets:

1. Chicago Taxi Trips BigQuery Dataset found here and queried for the inbound and outbound taxi
trips for each city community area (CCA) in 2017; and

2. Chicago City Demographics by CCA based on the 2013-2017 American Community Survey down-
loaded from here with data dictionary provided here.

2

https://www.kaggle.com/chicago/chicago-taxi-trips-bq
https://datahub.cmap.illinois.gov/dataset/1d2dd970-f0a6-4736-96a1-3caeb431f5e4/resource/8c4e096e-c90c-4bef-9cf1-9028d094296e/download/ReferenceCCAProfiles20132017.csv
https://datahub.cmap.illinois.gov/dataset/1d2dd970-f0a6-4736-96a1-3caeb431f5e4/resource/d23fc5b1-0bb5-4bcc-bf70-688201534833/download/CDSFieldDescriptions201906.pdf

Data Exploration
Before any exploration can be done, the data was first read in using the following code. Figure 2 summarizes
the features within the two datasets and highlights the field corresponding to the community area code
which is used to merge them together. The second code chunk was executed to produce a merged dataset.
Inbound trips represent taxi rides leaving from each community area while outbound trips represent taxi
rides terminating in each community area.
Read in datasets
inbound = pd.read_csv('data/CCA_inbound_trips.csv', index_col='Unnamed: 0')
outbound = pd.read_csv('data/CCA_outbound_trips.csv', index_col='Unnamed: 0')
demographics = pd.read_csv('data/CCAProfileSlim.csv')

Figure 2: Schematic of dataset column names

Merge inbound and outbound trip tables, dropping rides with no disclosed location
trips = inbound.merge(outbound, left_on='dropoff_community_area',

right_on='pickup_community_area').dropna()

Convert community area floats to integers
trips['Community_code'] = trips.apply(lambda x: int(x['dropoff_community_area']),

axis=1)

Merge trips and demographics
combined = trips.merge(demographics)
names_df = combined[['Community_code', 'GEOG']]

Drop extraneous columns
vars_df = combined.drop(columns=['dropoff_community_area',

'pickup_community_area',
'Community_code',
'GEOG'])

To get a better sense of our data, Figure 3 presents four scatter plots of the ridership columns where each
data point is a Chicago community area. From these charts we observe that the majority of community areas
had less than 1 million total inbound rides in 2017 with Near North Side, the Loop, Near West Side, Lake
View and Lincoln being the exceptions. Four community areas saw outbound rides over 1 million including
Near North Side, the Loop, Near West Side, and O’Hare.

3

Figure 3: Scatter plots of ridership columns

While it is possible to perform and visualize clustering on any pair of variables, this becomes problematic as
the number of features increases. The demographic data for each community area presents such a challenge
and makes a case for the implementation of dimension reduction.

Scaling Data
Prior to implementing dimension reduction, the data must be scaled to prevent features with the largest
numeric values from overshadowing other columns with smaller values. For example, the number of taxi
rides is in the millions while the average trip length is measured in minutes. A standard scaler was used to
convert the data in each column to Z-statistics.
Scale data
scaler = StandardScaler()
scaled_vars_df = pd.DataFrame(scaler.fit_transform(vars_df),

columns = vars_df.columns)

Dimension Reduction
Principal Component Analysis was used to map the 18 features to 2 dimensions as shown in the code below.
This reduction allows for the differences between each community area to be visualized on a single chart, as
seen in Figure 4.

4

Table 1: Sample of Scaled Combined Dataset
X inbound_rides inbound_avg_trip_length outbound_rides outbound_avg_trip_length TOT_POP MED_AGE POP_16OV IN_LBFRC EMP UNEMP WORK_AT_HOME
0 -0.1506617 -0.6905240 -0.1641290 -0.7845146 0.8647667 -0.3690088 0.9148035 0.9259441 0.9175782 0.4785181 0.8675256
1 -0.1515502 -1.0078340 -0.1613442 -0.9169364 1.7926199 -0.1145041 1.5803610 1.3183141 1.2720511 1.0893662 0.3100641
2 0.0687012 -0.8961850 -0.0195135 -0.7796655 0.9924545 0.1942477 1.2012901 1.2268527 1.2339673 0.4315298 1.4289832
3 -0.1343645 -0.6215325 -0.1779205 -0.6898292 0.2793151 -0.1487280 0.3548786 0.5482106 0.6231248 -0.5748034 0.9204744
4 -0.1150766 -0.5298912 -0.1904961 -0.5853802 0.0193776 -0.3411228 -0.0469096 0.2303290 0.3159530 -0.8434200 1.1402621
5 0.8707952 -0.8592051 0.6097369 -0.8231350 2.8565390 -0.9274223 3.1694750 3.8593740 3.9767922 0.3610473 4.1403638
6 0.8284565 -1.1098377 0.3960478 -1.0386696 1.4195574 -1.1131717 1.5745388 1.8425507 1.9486294 -0.3516089 2.2641763
7 6.6395714 -1.3854169 6.4487517 -1.1679246 2.3487266 -0.1856325 2.8035562 2.9023622 2.9813240 0.4080356 3.8956003
8 -0.2801615 0.2821415 -0.2592867 -0.2400100 -1.0414272 0.9201458 -1.0043600 -0.8465928 -0.7595414 -1.3164358 -0.4971561
9 -0.2476929 -0.1744774 -0.2430659 -0.1470862 0.0764007 1.6301482 0.1043653 0.0487805 0.1199604 -0.7517928 -0.0735653

WORK_AT_HOME TOT_COMM DROVE_AL CARPOOL TRANSIT WALK_BIKE COMM_OTHER NO_VEH ONE_VEH TWO_VEH THREEOM_VEH MEDINC TOT_HH
0.8675256 0.9182211 0.3862203 0.1251160 1.4229300 0.4925002 0.4735444 1.4668566 0.9143725 0.2143305 -0.5675161 -0.5056282 1.0074918
0.3100641 1.3251578 2.0807947 1.8747419 0.2753675 0.5561682 0.7445539 0.0503855 1.2788891 1.7704809 1.8419842 -0.0501477 1.1136373
1.4289832 1.2225908 0.4537396 0.1828262 1.9369386 0.6270799 0.9508447 1.9728471 1.4371090 0.4673831 -0.4606148 -0.0575389 1.5116347
0.9204744 0.5913858 0.5038001 -0.0351900 0.8166906 0.0979108 -0.0340929 0.0068134 0.6931010 0.6575410 -0.2496253 0.8770550 0.4516198
1.1402621 0.2648603 0.2175111 -0.2532062 0.4138909 0.0868547 -0.1756650 -0.4331893 0.2582426 0.7828389 -0.4029443 2.2590406 0.0861570
4.1403638 3.9454954 2.3264653 1.4075643 5.5947717 1.4696329 1.8953332 3.7570366 3.6657833 2.5664909 0.5788602 1.4864595 3.7579642
2.2641763 1.9145304 1.1469260 0.3779415 2.5112519 1.0369190 1.9924112 1.5232737 1.9470382 1.4378273 -0.1553833 2.0612977 1.7990720
3.8956003 2.8867473 1.1200252 0.2405364 1.9220398 6.2561730 7.0141774 4.8899113 4.0214333 0.9582559 -0.3002627 1.8080175 3.9887778

-0.4971561 -0.7690207 -0.6112484 -0.9814536 -0.7065344 -0.4609954 -0.4709441 -0.8349090 -0.8770789 -0.5359826 -0.2299329 2.0405197 -0.8655051
-0.0735653 0.1392855 1.0357597 -0.0150372 -0.4972417 -0.3809338 -0.3981355 -0.4407452 -0.2097180 1.5159542 1.3370159 0.9758892 0.1169642

Initialize and fit a PCA model
pca1 = PCA(n_components=2)
Z = pca1.fit_transform(scaled_vars_df)
Z_df = pd.DataFrame(Z, columns=['V1','V2'])

Figure 4: Scatter plot data projected on to Principal Component Vectors

Clustering
Given this transformed data, we may now embark on testing different clustering algorithms. K-means and
Gaussian Mixture Models are two clustering algorithms used in this analysis. Their results are compared in
the subsequent concluding section.

5

K-Means

The K-Means clustering algorithm creates spherical clusters of the input data and optimizes the location
of the cluster centers and their radii. To obtain the best K-means result, several numbers of clusters were
tested against two metrics: silhouette score and inertia. Silhouette score measures how similar an object to
its own cluster compared to the next closest cluster. As such, the higher the silhouette score, the better.
Inertia is the sum squared error for each cluster and corresponds to how densely packed together the points
in a cluster are. Accordingly, the lower the intertia, the closer each data point in a cluster is to its center and
the better the quality of results. In the code chunk and Figure 5 below, k represents the number of clusters
tested in the algorithm.
Initialize and fit a PCA model
results = {'k': [], 'inertia': [], 'silhouette': []}

#results = {'k': [], 'inertia': []}
for i in list(range(2,11,1)):

km = KMeans(n_clusters = i).fit(Z_df)
df_new = Z_df.copy()
df_new['prediction'] = km.predict(Z_df)
results['inertia'].append(km.inertia_)
results['k'].append(i)
results['silhouette'].append(silhouette_score(Z_df,df_new['prediction']))

k_test = pd.DataFrame(results)

Figure 5: K-Means results for differing values of k

From the results above, we observe that the k=2 and k=6 maximize silhouette. After k=6, it appears that
the inertia improvements wane. As such, k=6 is taken as the best result. The following code chuck assigns
each community area to a cluster and Figure 6 provides is visual representation.
Reproduce K-Means with k=6
km1 = KMeans(n_clusters=6)
km1.fit(Z_df)
Predict clusters for each community area

6

Z_df['cluster'] = km1.predict(Z_df)

Figure 6: K-Means visualization for k = 6

Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are another clustering algorithm which assumes the data points are
generated from a discrete number of Gaussian distributions. In making this assumption, GMMs may be
considered a generalization of K-Means to incorporate coveriances of the data in addition to the centers of
clusters. The code chunk below initializes and fits a GMM model to the data for multiple values of k. The
effectiveness of each model may be viewed looking at its Akaike Information criterion (AIC) and Bayesian
Information criterion (BIC). Both of these metrics balance the goal to maximize the likelihood of the model
while penalizing complexity under the following formulas:

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿̂)
𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2𝑙𝑛(𝐿̂)

As such, the lower the AIC and BIC scores, the better. The results of the algorithm are presented in Figure
7.
Initialize and fit GMM over a range of k values
Z_df2 = pd.DataFrame(Z, columns=['V1','V2'])
results = {'k': [], 'AIC': [], 'BIC': []}

for i in list(range(2,11,1)):
gm_new = GaussianMixture(n_init = 10, n_components = i).fit(Z_df2)
results['AIC'].append(gm_new.aic(Z_df2))
results['BIC'].append(gm_new.bic(Z_df2))
results['k'].append(i)

gmm_test = pd.DataFrame(results)

7

Figure 7: GMM results for differing values of k

While the AIC score decreased with increasing numbers of clusters, we observe that the BIC score is mini-
mized at k=4. This picture is not abnormal as BIC penalizes more complex models more strictly. As such,
k=4 is taken as the best result for this algorithm. Figure 8 presents a visualization of GMM clustering with
k=4.
Initialize and fit GMM with k = 4
Z_df3 = pd.DataFrame(Z, columns=['V1','V2'])
gm = GaussianMixture(n_init = 70, n_components = 4).fit(Z_df3)
Predict clusters for each community area
Z_df3['cluster'] = gm.predict(Z_df3)

Figure 8: Gaussian Mixture Model Visualization with 4 Clusters

8

Discussion
Figures 9 and 10 overlay the clustering results from the K-Means and GMM clustering algorithms. Under
K-Means, Near North Side was assigned a cluster of its own, while Lake View and West Town were assigned
in a cluster together. A third cluster containing The Loop and other North West shoreline neighbourhoods
was assigned while the remaining majority were split between the largest two clusters. Under GMM, Near
North Side was again assigned to its own cluster, while Lake View and West Town were also assigned to a
cluster together. The remaning neighbourhoods were split between two larger clusters.

Figure 9: Overlay of K-Means clusters on City Map using Kepler.gl

9

Figure 10: Overlay of K-Means clusters on City Map using Kepler.gl

Feature Importance
To answer the question of what features are driving the clustering results, the assigned clusters from K-Means
and the GMM were used as the target for a Random Forest Classifier. In doing so, the original features are
used as predictors and checked for their importance to the final cluster assignment. The code chunk below
fits a classifier for each of the two methods and creates summary tables of feature importance.
K-Means
Set up predictors and targets for model
Z_df = pd.DataFrame(Z, columns=['V1','V2'])
km_scaled_vars_df = scaled_vars_df.copy()
km_Y = km1.predict(Z_df)

Initialize and fit classifier

10

km_rf = RandomForestClassifier()
km_rf.fit(km_scaled_vars_df, km_Y)

GMM
Set up predictors and targets for model
Z_df3 = pd.DataFrame(Z, columns=['V1','V2'])
gm_scaled_vars_df = scaled_vars_df.copy()
gm_Y = gm.predict(Z_df3)

Initialize and fit classifier
gm_rf = RandomForestClassifier()
gm_rf.fit(gm_scaled_vars_df, gm_Y)

Table 2: Top 5 features for clustering using K-Means

X Feature Importance
7 IN_LBFRC 0.1333159
8 EMP 0.1120256
6 POP_16OV 0.1021819
4 TOT_POP 0.0884568

11 TOT_COMM 0.0837074

Table 3: Top 5 features for clustering using a GMM

X Feature Importance
8 EMP 0.1458132
7 IN_LBFRC 0.1228078

10 WORK_AT_HOME 0.1050678
18 ONE_VEH 0.0860761
11 TOT_COMM 0.0814540

As seen in Table 2, the top 5 features for clustering using K-Means were population employed, population
in labor force, total commuters, population over 16, and total population. Of these five features, population
employed, population in labor force and total commuters were also among the most relevant for the GMM
clusters. The other top features for the GMM clusters were population working at home and the number
of households with one vehicle, as shown in Table 3. From these results, we note the demographic variables
are overshadowing the taxi ridership features. Going forward, iterating on removing some demographic data
will help to increase the importance taxi ridership behavior in the creation of clusters.

11

Appendix
Dependencies
This analysis was performed using the packages shown below.
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans, DBSCAN
from sklearn.mixture import GaussianMixture
import altair as alt
from altair_saver import save
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.decomposition import PCA

Plotting functions

def alt_scatter(x_var,y_var,data):
chart = alt.Chart(data).mark_point().encode(
x=alt.X(x_var, axis = alt.Axis(labelAngle = 0)),
y=y_var

).properties(title = y_var +' vs. ' +x_var)
return chart

def alt_scatter_cluster(x_var,y_var, label, data):
chart = alt.Chart(data).mark_point().encode(
x=alt.X(x_var, axis = alt.Axis(labelAngle = 0)),
y=y_var,
color=label

).properties(title = y_var +' vs. ' +x_var + " by cluster")
return chart

def alt_linechart(x_var,y_var,data):
chart = alt.Chart(data).mark_line().encode(
x=alt.X(x_var+':O', axis = alt.Axis(labelAngle = 0)),
y=y_var

).properties(title = y_var +' vs. ' +x_var)
return chart

SQL queries for Inbound and Outbound trips

OUTBOUND QUERY
query2 = """SELECT

pickup_community_area,
COUNT(1) AS outbound_rides,
AVG(trip_miles) AS outbound_avg_trip_length

FROM
`bigquery-public-data.chicago_taxi_trips.taxi_trips`

12

WHERE
EXTRACT(YEAR FROM trip_start_timestamp) = 2017

GROUP BY
pickup_community_area

ORDER BY
pickup_community_area

"""
outbound = chicago_taxi.query_to_pandas_safe(query2, max_gb_scanned=10)

INBOUND QUERY
query3 = """SELECT

dropoff_community_area,
COUNT(1) AS inbound_rides,
AVG(trip_miles) AS inbound_avg_trip_length

FROM
`bigquery-public-data.chicago_taxi_trips.taxi_trips`

WHERE
EXTRACT(YEAR FROM trip_start_timestamp) = 2017

GROUP BY
dropoff_community_area

ORDER BY
dropoff_community_area

"""
inbound = chicago_taxi.query_to_pandas_safe(query3, max_gb_scanned=10)

13

	Summary
	Analysis
	Problem
	Data Sources
	Data Exploration
	Scaling Data
	Dimension Reduction
	Clustering
	K-Means
	Gaussian Mixture Models

	Discussion
	Feature Importance

	Appendix
	Dependencies
	Plotting functions
	SQL queries for Inbound and Outbound trips

