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Executive Summary
Matching known vulnerabilities to affected vendor files is an important task which helps aDolus’ customers
quantify the cybersecurity risk in specific vendor software and firmware. Through the creation of the
periculum pipeline, aDolus is provided with an automated tool to generate new vulnerability-vendor file
matches augmententing the utility of their Framework for Analysis and Coordinated Trust (“FACT”) platform.
For all vendors cataloged in aDolus’ database of product lines, the pipeline may be applied to any collection
of corresponding vendor advisory reports saved in an S3 bucket. As demonstrated with Rockwell Automation,
the pipeline can find the paths in an advisory up to 73% of the time and a companion report will be produced
to address shortcomings by allowing a human to verify the quality of matches, ensuring a fully transparent
process. Figure 1 summarizes implementation of the periculum pipeline which replaces a slow and manual
workflow.

Figure 1: Periculum pipeline magic

Introduction
The Problem
The use of digital automation control in industrial systems brings with it the risk of firmware and software
vulnerabilities in these products. If an entity with malicious intent is able to compromise such a system via its
components, such disruption could lead to severe consequences. A poignant example is the 2014 cyberattack
of a steel mill in Germany, which led to the explosion of a blast furnace due to shutdown failure1. In an
attempt to combat potential breaches, firmware and software are regularly updated from vendors and/or
third party distributors to patch vulnerabilities; however, this patching may introduce further vulnerability
vectors in the form of “man-in-the-middle” attacks2, increasing the risk of installing malicious software and
firmware.

aDolus’ Framework for Analysis and Coordinated Trust (“FACT”) platform provides a solution to evaluate
the security of firmware/software packages and their sub-components before installation occurs in critical
equipment3. In the evaluation process, FACT uses an internal database of matches between known vulnera-
bilities and affected files. This database of matches was created and is updated manually by reviewing vendor
advisory reports and tagging affected files in aDolus’ growing catalog of vendor products. The crux of this
problem there is to automate the process of linking the vulnerabilities in the reports from various sources to
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affected components in software and firmware packages. The automated solution must be robust to handle a
diverse set of vulnerability report formats and structures while being transparent and auditable.

Objectives
Our capstone partner’s needs are to extract information about vulnerabilities in vendor advisory reports and
match it to the ultimate affected components in the software/firmware through an automated pipeline. To be
able to locate the affected components, the paths (product names, versions) to those files need to be identified
from the advisory reports. Thus, the main objective of this project may be refined as the matching of path
information mentioned in the advisory reports to paths in the aDolus database and finding the affected files
within the target paths. Essentially, this project is a Natural Language Processing (“NLP”) problem.

Data Science Methods
This project presents several unique challenges discussed in the Appendix leading to it being quite different
from the traditional supervised learning problem. That said, the periculum pipeline discussed below touches
on various methods learned throughout the program.

Periculum Pipeline
We developed a software package called periculum to implement this pipeline1. This package has five main
modules. First, parse_advisories.py is used to parse all the reports in the S3 buckets into plain texts.
Then, reports_vectorizer.py vectorizes product line paths into tokens and generates a sparse matrix of
path token counts for each advisory report. path_scorer.py selects matched paths for each report based
on scoring metrics. Finally, match_summarize.py, graphics_gen.py and a jupyter notebook summarize
the results in a .csv file, generate visualizations and make a companion report. Throughout this process,
intermediary files are passed between scripts using feather4.

Figure 2: Overview of periculum data pipeline

Text Extraction

Before any work can be done with the text of vendor advisory reports, parse_advisories.py reads and
extracts the plain text from the raw data files found in an Amazon Web Services S3 bucket using boto35 and
stores it in single aggregate table. Additionally BeautifulSoup6 and pdfminer7 to handle .html and .pdf
respectively, expanding the fuctionality beyond .txt files.

1periculum is the latin word for danger and is the help signalling spell in Harry Potter. Our package embodies the theme of
this spell by signalling to aDolus when and where vulnerabilities are found in its catalog of vendor products.
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Vectorizing Reports

The crux of our project relies on the concept of tokenizing documents, which is a widely-used tech-
nique in Natural Language Processing. The key script for this is reports_vectorizer.py, which uses
sklearn.CountVectorizer8, a scikit-learn method, to turn texts into a sparse-matrix of token counts.

The overview for the algorithm which we implemented is as follows.

• Call fit_transform on the list of paths we obtain from the database using pyodbc9, which generates
a <number of paths> × <number of tokens> matrix representing the count of each token per path,
and uses those same tokens as the vocabulary for the next step.

• Call transform on each report, which generates a <number of tokens> × 1 matrix, representing the
counts of each vocabulary token in the report.

• For every path that was used in the tokenizer, we compare the counts between the path token matrix
row and the report token matrix, and keep only the non-zero values for tokens that are in both the path
token row and report matrix. This represents the count of tokens present in each path in the report.

The algorithm produces a <number of paths> × <number of tokens> matrix for each report. This matrix
is then written to file, and we will use this matrix to generate scores in order to determine the paths that are
associated with a report.

Figure 3: Overview for Reports Vectorizer

As of the current iteration, we have achieved a final run-time of 2 seconds per report.

Path Scoring

After the scoring matrix is generated, we can now entertain a few methods of scoring to determine the quality
of paths associated with a given advisory report.

Using the figure above as an example,

index 13.0 15.2 16.0 5400 5700 Networks Stratix
path1 0 4 0 1 0 0 4
path2 0 0 0 0 1 0 4
path3 0 0 0 0 0 0 0

we obtain a sparse matrix,
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Spaths,tokens =


0 4 0 1 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 0 0
...


The most straight-forward approach is by using simple sum, where:

score =
∑

i∈tokens

Si

e.g.:

Ssimple_sum_score =


0 + 4 + 0 + 1 + 0 + 0 + 4
0 + 0 + 0 + 0 + 1 + 0 + 4
0 + 0 + 0 + 0 + 0 + 0 + 0

...

 =


9
5
0
...


Alternatively, we can use a simple count by judging whether or not a token is present in the advisory report,
rather than using the number of times it has occurred:

score =
∑

i∈tokens

1N (Si)

, where 1N is the indicator function.

e.g.:

Ssimple_count_score = 1N (Spaths,tokens) =


0 + 1 + 0 + 1 + 0 + 0 + 1
0 + 0 + 0 + 0 + 1 + 0 + 1
0 + 0 + 0 + 0 + 0 + 0 + 0

...

 =


3
2
0
...


A more sophisticated method would be using a weighted score, where we would apply a weight corresponding
to the importance of each token to the score generated by either of the two previous methods:

score =
∑

i∈tokens

w · Si

, where score is a score generated by either of the two previous methods, and w is a set array of weights
depending on the importance of the token.

e.g.: for w = [1, 3, 5, ...],

Sweighted_score =


(5 · 0) + (1 · 4) + (3 · 0) + (5 · 1) + (1 · 0) + (5 · 0) + (1 · 4)
(5 · 0) + (1 · 0) + (3 · 0) + (5 · 0) + (1 · 1) + (5 · 0) + (1 · 4)
(5 · 0) + (1 · 0) + (3 · 0) + (5 · 0) + (1 · 0) + (5 · 0) + (1 · 0)

...

 =


13
5
0
...


Model Selection

The data pipeline provided is designed for flexibility in how paths are chosen (or scored) for an advisory.
Within the path_scorer.py script is a hyper-parameter in the score_paths() function that allows the
package user to select new methods of scoring without having to modify the pipeline.

In choosing a default method to implement, and to provide the client with some understanding of the
performance of potential scorers, four scoring methods were investigated: simple sum, simple count,
weighted_sum, and weighted_count. These methods were tested on a manually labelled data set curated for
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the Rockwell product line in aDolus’ database. Key hyperparameters in the scorers tested are Threshold and
Weights (for the weighted methods). Threshold was implemented to give the user control of how tolerant
the pipeline should be in flagging paths (based on normalized score) and Weights to allow for potential model
performance improvements based on the domain knowledge that deeper path tokens might be more valuable
than shallow ones. For example, version 12.03.05, a productlinetype level 3 token, is much more specific
than controller, a productlinetype level 1 token, adding merit to providing more weight to said version
tokens.

A summary of some of the scoring methods tested, with said hyperparameters is shown below.

Table 2: Scorer Performance Compared

Scorer Threshold Weights Total.Path.Count Avg.Recall Avg.Precision F1.Score
weighted count 0.9 [0, 0.2, 1, 1, 0.45] 590 23.41% 28.87% 0.259
weighted count 0.8 [0, 0.2, 1, 1, 0.45] 1172 29.39% 25.07% 0.271
weighted count 0.7 [0, 0.2, 1, 1, 0.45] 4334 41.11% 20.67% 0.275
weighted count 0.6 [0, 0.2, 1, 1, 0.45] 14734 53.95% 17.45% 0.264
weighted sum 0.9 [0, 0.2, 1, 1, 0.45] 856 33.03% 30.37% 0.316
weighted sum 0.8 [0, 0.2, 1, 1, 0.45] 3367 38.85% 30.29% 0.340
weighted sum 0.7 [0, 0.2, 1, 1, 0.45] 7318 49.55% 26.48% 0.345
weighted sum 0.6 [0, 0.2, 1, 1, 0.45] 13219 58.80% 23.22% 0.333
simple count 0.9 N/A 811 23.38% 33.42% 0.275
simple count 0.8 N/A 912 25.10% 33.49% 0.287
simple count 0.7 N/A 3744 38.41% 24.75% 0.301
simple count 0.6 N/A 19286 62.55% 16.51% 0.261
simple sum 0.9 N/A 981 31.92% 28.69% 0.302
simple sum 0.8 N/A 1783 38.85% 25.16% 0.305
simple sum 0.7 N/A 4491 48.88% 20.82% 0.292
simple sum 0.6 N/A 8482 63.65% 19.03% 0.293

aDolus has communicated that it is of high importance not to miss target files than if the pipeline accidentally
tags incorrect files, i.e false negatives are of more importance than false positives. This is because the
potential cost to aDolus’ clients should a vulnerable file be left undetected could be catastrophic compared to
investigating a miss-labelled file and determining upon closer inspection that is fine. To ensure the model
was aligned with this requirement, recall2 and precision3 have been used as model evaluation metrics in
comparing scorers as opposed to accuracy and false positive rate.

A common trend seen among all scorers is that as recall rises, precision decreases. While it might be tempting
to choose a model purely with a high recall, a balance of the two metrics is important. At low precision, the
number of recommended paths can balloon to very large volumes (18,000 compared to 3,000), making the
task of human verification exponentially difficult and defeating the purpose of the pipeline. Furthermore,
the pipeline can easily get a perfect recall of 100% by simply returning all of file paths for Rockwell given
Rockwell advisories, but then it isn’t doing much value is it. Therefore, to strike a balance between recall
and precision, the team utilized F1 Score4 for choosing a model scorer.

Based on F1 Score, it was seen that summation methods perform better overall than count based methods.
This is attributed to there being value in giving weight to tokens that occur more frequently. Tokens like
FactoryTalk or Stratix, which occurring numerous times in an advisory report, can be highly beneficial
to correctly building weight on paths containing these terms. However, this assumption is not always the
case. By examining poorly performing advisory reports, the team discovered that certain tokens, labelled
trouble_tokens, can wreak havoc on a scorer’s ability to correctly find a path. High occurrence tokens

2Recall refers to the what percentage of true matches are captured.
3Of the model-recommended paths, precision refers to the percentage of were correct.
4F1 Score conveys the balance between precision and recall and reaches its best value at 1.
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like system, products, or control commonly occur across many reports and incorrectly shift scores to false
paths. To make matters further complicated, these trouble tokens are varied and often spread all through
different productlinetypes making their identification difficult.

To mitigate against said trouble_tokens, the pipeline has been coded to have a filter that can either
automatically (using obtain_trouble_tokens()) or from a user provided list remove trouble_tokens. If
ran as automatic, the pipeline benefits from bulk processing of many advisories, because it will look at tokens
that frequently occur across the reports and flag them for removal if the occur above a certain percentage.
For example, system occurs in every Rockwell advisory; hence, it is likely not a useful token to identifying
the details of a report.

Table 3: Scorer Performance With Trouble Tokens Removed

Scorer Threshold Max.Token.Freq. Total.Path.Count Avg.Recall Avg.Precision F1.Score
13 simple sum 0.9 1 981 31.92% 28.69% 0.302
14 simple sum 0.8 1 1783 38.85% 25.16% 0.305
15 simple sum 0.7 1 4491 48.88% 20.82% 0.292
16 simple sum 0.6 1 8482 63.65% 19.03% 0.293
69 simple sum 0.9 0.4 1847 44.93% 30.65% 0.364
70 simple sum 0.8 0.4 2751 58.27% 34.12% 0.430
71 simple sum 0.7 0.4 6838 67.73% 30.70% 0.422
72 simple sum 0.6 0.4 10745 72.37% 27.36% 0.397

An alternative approach to trouble token removal that was tested was to use the structure of reports to filter
out non-valuable and potentially miss-leading sections of advisory reports. The parse_advisories.py script
was written such that it allows for new condensed-report parsers to be added without changing the pipeline
script. Testing a condensed-report parser for Rockwell yielded improved results, but not as much as methods
to remove trouble_tokens. Therefore, a condensed-report parser was not implemented as default because its
benefit was marginal for the complexity it added. Combining the two methods also showed no added benefit
beyond obtain_trouble_tokens(), likely because the additional ‘non-useful’ text left in the reports actually
benefited the pipeline by making it easier for obtain_trouble_tokens() to find commonly occurring tokens.

File Searching

After target paths were identified for each report, the next step is to search for the affected files in the target
paths through the SQL database. Each path has an unique product line identifier Guid in ProductLineView
table. The product line Guids of the path are then used to query ChildFIleView table and VendorFilePro-
ductLine table to find the IDs for the files and their child files living in the target paths. Then, the file IDs
are used to query the FileView table to get all the information of the files. Those files will be further filtered
based on their extensions for executables file, which are usually the targets of attacking. Finally we get all
the affected executable files for each target path.

Run-time optimization
In addition to applying various data science methods in the implementation of the periculum pipeline, the
team sought to improve the run-time of the various steps. These efforts are discussed in more detail in the
Appendix.

Data Product and Results
The output of this pipeline is a match_summary_report.csv file which contains the advisory report infor-
mation(names and S3 bucket links), the matched path information(Paths, ProductLineGuid, Normalized
score) and the affected file information(FileID, use all_columns=True for match_summarize.py if all the
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Figure 4: Overview of File Search

features of the files are needed). The included information are selected according to the needs of our capstone
partener.

To facilitate the needs of our capstone partner to have human-in-the-loop to verify matches, a companion
report in PDF format is generated (See sample here). The companion report contains summary statistics
about the number of affected files for each advisory report. It also lists all the paths matched to each report
along with the matching scores, allowing a reviewer to quickly scan for erroneous paths in an advisory report
of interest.

This pipeline is fully automated from the raw advisory reports to the final output of match_summary_report.csv
and companion report. Our capstone partner can run this pipeline in two ways:

1) Install all the dependencies and run the pipeline using the tool Make in local computer or EC2; and

2) Use the Docker image with environment dependencies and the tool Make in local computer or EC2.

These options add more flexibility for our capstone partner in running the pipeline. Details for using periculum
are explained in the project GitHub repository.

Conclusion and Recommendations
The pipeline provided to aDolus consumes a collection of vulnerability reports and find products and files
within aDolus’s database that match the content of the vulnerabilities. The pipeline is able to process
documentation of different formats and structures, and in the span of a few minutes, process up to 100
advisory reports. As demonstrated by the Rockwell data set, the pipeline can find the paths in an advisory
up to 73% of the time and a companion report will be produced to address shortcomings by allowing a human
to verify the quality of matches. In summary, the pipeline provided meets the criteria set by aDolus and can
be implemented as a tool to assist in the matching of vulnerability reports to affected files. With further
development, it may be possible to integrate the pipeline into an automated system with minimal human
over-site but further steps are required.

Some of the recommended actions for future work are as follows:

• Confirm the manual validation data. The dataset used to validate scorers was built by the team
without domain expertise. An expert at aDolus could likely produce a more accurate dataset.
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• Expand product trees to include vendors beyond Rockwell and Schneider Electric. Cur-
rently the model is limited to processing advisories for only these two vendors because only they have
product line trees that can be queried.

• Test other vectorizers. Other vectorizers such as tfidf may be able to enhance performance by
weighting path tokens differently based on frequency across paths.

• Perform an optimization of scorer methods. Due to time constraints, only a few configurations
of scorers where able to be tested. Different weighting systems for weighted_count and weighted_sum
methods may yield higher performing scorers if an exhaustive grid search through available hyperpa-
rameters was performed. Furthermore, other scorers not considered, such as an ensemble method could
improve performances.

• Add additional parameters to pipeline output. Time constraints did not allow for it, but adding
parameters like CPE and url information in the companion reports may assist human validation.

• Add Version context classification. Often security advisories have various version formats. For
example, one advisory might say a vulnerability affects version “5.2 and earlier”, whereas another
“later that 3.4”. Currently, the pipeline is limited to finding versions “5.2” and “3.4” and will not know
“earlier” or “later” because these tokens do not exist in path vocabularies. Creating an additional layer
of functionality to determine the version context of a report, whether “earlier” or “later”, could aid in
increasing the precision of the pipeline output by eliminating paths that are out of version context.

• Add file-properties to database. Because of the very limited file details, the team was only able to
match to files through product paths. If additional details were added to files within aDolus’ database,
it may become possible to find files directly instead of through paths.

Appendix
Unique challenges
Due to the lack of labeled data, the supervised method is not applicable here. A traditional unsupervised
solution is to extract the path information use regular expressions from the advisory reports and then match
it to the paths in the database. However, there are three problems making this method unsuitable:

1) Since the advisory reports are in several different formats, this solution needs deep understanding of all
the report structures to extract information from the reports;

2) Even with the advisory reports in the same format, the path information is written in different places,
making it harder to locate the useful information; and

3) The path information in the advisory reports may not match exactly to the paths in the database, thus
certain level of tolerance for mismatches needs to be enabled to identify the paths.

To overcome these problems, we proposed a universal method which can be applied to advisory reports in
any format and structure. It can also be tailored to different levels of tolerance for mismatches. This method
vectorizes the advisory reports and paths in the database into tokens. Each advisory report will be evaluated
for how close it matches to each path in the database. Target paths for advisory report will be selected based
on the scoring metrics. Lastly, affected files will be identified within the target paths.

Run-time optimization
Vectorization improvements

While the algorithm worked in terms of business logic, it was extremely time-consuming and inefficient, as the
naive approach for this is very computationally expensive. Rockwell Automation (“Rockwell”), for example,
has ~7000 paths available, which generated ~1300 tokens. This resulted in a very large, but very sparse
matrix; as a result the initial algorithm took 10 minutes to process each report. From there, we made several
iterations of improvements to the algorithm.
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The first improvement to the algorithm was to consider only the paths that generate an non-zero matrix (i.e:
only rows with tokens present), as well as only considering tokens that are present in any document (i.e: only
columns with tokens present). This resulted in a 5x speedup, and reduced the per-report run-time from 10
minutes to 2 minutes.

The next improvement was the usage of Boolean Masking for our sparse matrix when comparing values.
Instead of iterating through each cell and comparing the values, a Boolean mask was generated for each row
of the fit_transform token matrix and the transform token matrix for each document; only the cell values
that are true after performing a bit-wise and operations on the masks are kept.

Additionally, we also used vectorized operations. Instead of looking at each row & column to determine if
they’re non-zero using the naive approach with np.sum() > 0 while iterating through each row and column
(O(m · n), where m and n are column and row sizes, respectively), we used vectorized operations built into
numpy (ndarray.T), which vastly improved run-time speed. ### Run time optimization

SQL query call minimization

As querying aDolus’ SQL database takes time, the team sought to minimize these occurences where possible
in the following cases by avoiding SQL calls in loops for multiple advisory reports in path_scorer.py. This
change reduced run-time by an order of magnitude.
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